SERS combined with the difference in bacterial extracellular electron transfer ability to distinguish Shewanella.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy(2023)

引用 0|浏览2
暂无评分
摘要
Shewanella plays an important role in geochemical cycle, biological corrosion, bioremediation and bioenergy. The development of methods for identifying Shewanella can provide technical support for its rapid screening, in-depth research into its extracellular respiratory mechanism and its application in ecological environment remediation. As a tool for microbial classification, identification and detection, Surface-enhanced Raman scattering (SERS) has high feasibility and application potential. In this work, bio-synthesized silver nanoparticles (AgNPs) were used as SERS substrates to effectively distinguish different types of Shewanella bacteria based on the difference in bacterial extracellular electron transfer (EET) ability. AgNPs were combined with the analyzed bacteria to prepare "Bacteria-AgNPs" SERS samples, which can strongly enhance the Raman signal of the target bacteria and reliably obtain spatial information of different molecular functional groups of each bacteria. Our developed approach can effectively distinguish between non-metal reducing and metal-reducing bacteria, and can further distinguish the three subspecies of Shewanella (Shewanella oneidensis MR-1, Shewanella decolorationis S12, and Shewanella putrefaciens SP200) at the genus and species level. The Raman signal enhancement is presumably caused by the excitation of local surface plasma (LSP) and the enhancement of surrounding electric field. Therefore, our developed method can achieve interspecific and intraspecies discrimination of bacteria. The proposed method can be extended to distinguish other metal-reducing bacteria, and the novel SERS active substrates can be developed for practical applications.
更多
查看译文
关键词
Metal-reducing bacteria,Shewanella,SERS,Silver nanoparticle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要