GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis

Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi Xu, Xiaofei Xie, Yang Liu

arxiv(2023)

引用 2|浏览56
暂无评分
摘要
Smart contracts are prone to various vulnerabilities, leading to substantial financial losses over time. Current analysis tools mainly target vulnerabilities with fixed control or data-flow patterns, such as re-entrancy and integer overflow. However, a recent study on Web3 security bugs revealed that about 80 lack of domain-specific property description and checking. Given recent advances in Large Language Models (LLMs), it is worth exploring how Generative Pre-training Transformer (GPT) could aid in detecting logicc vulnerabilities. In this paper, we propose GPTScan, the first tool combining GPT with static analysis for smart contract logic vulnerability detection. Instead of relying solely on GPT to identify vulnerabilities, which can lead to high false positives and is limited by GPT's pre-trained knowledge, we utilize GPT as a versatile code understanding tool. By breaking down each logic vulnerability type into scenarios and properties, GPTScan matches candidate vulnerabilities with GPT. To enhance accuracy, GPTScan further instructs GPT to intelligently recognize key variables and statements, which are then validated by static confirmation. Evaluation on diverse datasets with around 400 contract projects and 3K Solidity files shows that GPTScan achieves high precision (over 90 token contracts and acceptable precision (57.14 Web3Bugs. It effectively detects ground-truth logic vulnerabilities with a recall of over 70 GPTScan is fast and cost-effective, taking an average of 14.39 seconds and 0.01 USD to scan per thousand lines of Solidity code. Moreover, static confirmation helps GPTScan reduce two-thirds of false positives.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要