Demystifying Noise Resilience of Quantum Error Correction: Insights for Code Optimization

arxiv(2023)

引用 0|浏览1
暂无评分
摘要
Quantum error correction codes (QECCs) are critical for realizing reliable quantum computing by protecting fragile quantum states against noise and errors. However, limited research has analyzed the noise resilience of QECCs to help select optimal codes. This paper conducts a comprehensive study analyzing two QECCs - repetition codes and surface codes - under different error types and noise models using simulations. Surface codes emerge robust to both bit and phase flip errors. Among them, rotated surface codes perform best with higher thresholds attributed to simplicity and lower qubit overhead. The noise threshold, or the point at which QECCs become ineffective, surpasses the error rate found in contemporary quantum processors. When confronting quantum hardware where a specific error or noise model is dominant, a discernible hierarchy emerges for surface code implementation in terms of resource demand. This ordering is consistently observed across repetition, unrotated, and rotated surface codes. Our noise model analysis ranks the code-capacity model as the most pessimistic and circuit-level model as the most realistic. The study maps error thresholds, revealing surface code's advantage over modern quantum processors. It also shows higher code distances and rounds consistently improve performance. However, excessive distances needlessly increase qubit overhead. By matching target logical error rates and feasible number of qubits to optimal surface code parameters, our study demonstrates the necessity of tailoring these codes to balance reliability and qubit resources.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要