Biosensor development for low-level acetaldehyde gas detection using mesoporous carbon electrode printed on a porous polyimide film.

Biosensors & bioelectronics(2023)

引用 0|浏览3
暂无评分
摘要
Acetaldehyde, which is an intermediate product of alcohol metabolism, is known to induce symptoms, including alcohol flushing, vomiting, and headaches in humans. Therefore, real-time monitoring of acetaldehyde levels is crucial to mitigating these health issues. However, current methods for detecting low-concentration gases necessitate the use of complex measurement equipment. In this study, we developed a low-cost, low-detection-limit, enzyme-based electrochemical biosensor for acetaldehyde gas detection that does not require sophisticated equipment. The sensor was constructed by screen-printing electrodes onto a porous polyimide film, using grafted MgO-templated carbon (GMgOC) as working electrode material, carbon for the counter electrode, and silver/silver chloride for the reference electrode. Pyrroloquinoline-quinone-dependent aldehyde dehydrogenase was immobilized on the working electrode, and a chamber was attached to the electrode chip and filled with 1-methoxy-5-methylphenazinium methyl sulfate solution. The sensor can be used to measure acetaldehyde gas concentrations from 0.02 to 0.1 ppm, making it suitable for monitoring human skin gas. This low detection limit was achieved by delivering the analyte through the porous polyimide film on which the electrodes were printed and accumulating acetaldehyde in the mesoporous GMgOC of the working electrode. This mechanism suggests that this sensor design can be adapted to develop other low-detection limit gas sensors, such as those for screening skin gas biomarkers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要