Enhanced glycolysis-mediated energy production in alveolar stem cells is required for alveolar regeneration.

Cell stem cell(2023)

Cited 1|Views16
No score
Abstract
Impaired differentiation of alveolar stem cells has been identified in a variety of acute and chronic lung diseases. In this study, we investigate the mechanisms that modulate alveolar regeneration and understand how aging impacts this process. We have discovered that the process of alveolar type II (AT2) cells differentiating into AT1 cells is an energetically costly process. During alveolar regeneration, activated AMPK-PFKFB2 signaling upregulates glycolysis, which is essential to support the intracellular energy expenditure that is required for cytoskeletal remodeling during AT2 cell differentiation. AT2 cells in aged lungs exhibit reduced AMPK-PFKFB2 signaling and ATP production, resulting in impaired alveolar regeneration. Activating AMPK-PFKFB2 signaling in aged AT2 cells can rescue defective alveolar regeneration in aged mice. Thus, beyond demonstrating that cellular energy metabolism orchestrates with stem cell differentiation during alveolar regeneration, our study suggests that modulating AMPK-PFKFB2 signaling promotes alveolar repair in aged lungs.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined