DNA-encoded chemical libraries yield non-covalent and non-peptidic SARS-CoV-2 main protease inhibitors

Communications Chemistry(2023)

引用 1|浏览17
暂无评分
摘要
The development of SARS-CoV-2 main protease (M pro ) inhibitors for the treatment of COVID-19 has mostly benefitted from X-ray structures and preexisting knowledge of inhibitors; however, an efficient method to generate M pro inhibitors, which circumvents such information would be advantageous. As an alternative approach, we show here that DNA-encoded chemistry technology (DEC-Tec) can be used to discover inhibitors of M pro . An affinity selection of a 4-billion-membered DNA-encoded chemical library (DECL) using M pro as bait produces novel non-covalent and non-peptide-based small molecule inhibitors of M pro with low nanomolar K i values. Furthermore, these compounds demonstrate efficacy against mutant forms of M pro that have shown resistance to the standard-of-care drug nirmatrelvir. Overall, this work demonstrates that DEC-Tec can efficiently generate novel and potent inhibitors without preliminary chemical or structural information.
更多
查看译文
关键词
inhibitors,chemical libraries,dna-encoded,non-covalent,non-peptidic,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要