谷歌浏览器插件
订阅小程序
在清言上使用

Advanced cell technologies: Making protein, cell, and gene therapies a reality.

Biotechnology and bioengineering(2023)

引用 0|浏览19
暂无评分
摘要
Biotechnology and BioengineeringEarly View EDITORIAL Advanced cell technologies: Making protein, cell, and gene therapies a reality Isabelle Geada, Isabelle Geada Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USASearch for more papers by this authorAntonio Roldão, Antonio Roldão Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, PortugalSearch for more papers by this authorMichael J. Betenbaugh, Michael J. Betenbaugh Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USASearch for more papers by this authorPaula M. Alves, Corresponding Author Paula M. Alves [email protected] orcid.org/0000-0003-1445-3556 Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal Correspondence Paula M. Alves, Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras, Portugal. Email: [email protected]Search for more papers by this author Isabelle Geada, Isabelle Geada Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USASearch for more papers by this authorAntonio Roldão, Antonio Roldão Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, PortugalSearch for more papers by this authorMichael J. Betenbaugh, Michael J. Betenbaugh Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USASearch for more papers by this authorPaula M. Alves, Corresponding Author Paula M. Alves [email protected] orcid.org/0000-0003-1445-3556 Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal Correspondence Paula M. Alves, Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras, Portugal. Email: [email protected]Search for more papers by this author First published: 03 August 2023 https://doi.org/10.1002/bit.28521 Special Issue Guest Editors Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Azadian, S., Doustmohammadi, A., Naseri, M., Khodarahmi, M., Arab, S. S., Yazdanifar, M., Zahiri, J., & Lewis, N. E. (2023). Reconstructing the cell–cell interaction network among mouse immune cells. Biotechnology and Bioengineering, 1–9. https://doi.org/10.1002/bit.28431 Bachhav, B., de Rossi, J., Llanos, C. D., & Segatori, L. (2023). Cell factory engineering: challenges and opportunities for synthetic biology applications. Biotechnology and Bioengineering, 1–19. https://doi.org/10.1002/bit.28365 Belliveau, J., & Papoutsakis, E. T. (2023). The microRNomes of Chinese hamster ovary (CHO) cells and their extracellular vesicles, and how they respond to osmotic and ammonia stress. Biotechnology and Bioengineering, 1–17. https://doi.org/10.1002/bit.28356 Costa, M. H. G., Costa, M. S., Painho, B., Sousa, C. D., Carrondo, I., Oltra, E., Pelacho, B., Prosper, F., Isidro, I. A., Alves, P., & Serra, M. (2023). Enhanced bioprocess control to advance the manufacture of mesenchymal stromal cell-derived extracellular vesicles in stirred-tank bioreactors. Biotechnology and Bioengineering, 1–17. https://doi.org/10.1002/bit.28378 Cuevas-Juárez, E., Liñan-Torres, A., Hernández, C., Kopylov, M., Potter, C. S., Carragher, B., Ramírez, O. T., & Palomares, L. A. (2023). Mimotope discovery as a tool to design a vaccine against zika and dengue viruses. Biotechnology and Bioengineering, 1–14. https://doi.org/10.1002/bit.28392 Escandell, J., Moura, F., Carvalho, S. B., Silva, R. J. S., Correia, R., Roldão, A., Gomes-Alves, P., & Alves, P. M. (2023). Towards a scalable bioprocess for rAAV production using a HeLa stable cell line. Biotechnology and Bioengineering, 1–10. https://doi.org/10.1002/bit.28394 Fernandes-Platzgummer, A., Cunha, R., Morini, S., Carvalho, M., Moreno-Cid, J., García, C., Cabral, J. M. S., & da Silva, C. L. (2023). Optimized operation of a controlled stirred tank reactor system for the production of mesenchymal stromal cells and their extracellular vesicles. Biotechnology and Bioengineering, 1–14. https://doi.org/10.1002/bit.28449 Fu, Q., Polanco, A., Lee, Y. S., & Yoon, S. (2023). Critical challenges and advances in recombinant adeno-associated virus (rAAV) biomanufacturing. Biotechnology and Bioengineering, 1–21. https://doi.org/10.1002/bit.28412 Göbel, S., Jaén, K. E., Dorn, M., Neumeyer, V., Jordan, I., Sandig, V., Reichl, U., Altomonte, J., & Genzel, Y. (2023). Process intensification strategies toward cell culture-based high-yield production of a fusogenic oncolytic virus. Biotechnology and Bioengineering, 1–19. https://doi.org/10.1002/bit.28353 Hamaker, N. K., & Lee, K. H. (2023). High-efficiency and multilocus targeted integration in CHO cells using CRISPR-mediated donor nicking and DNA repair inhibitors. Biotechnology and Bioengineering, 1–22. https://doi.org/10.1002/bit.28393 Hilliard, W., & Lee, K. H. (2023). A compendium of stable hotspots in the CHO genome. Biotechnology and Bioengineering, 120, 2133–2143. https://doi.org/10.1002/bit.28390 Jiménez del Val, I., Kyriakopoulos, S., Albrecht, S., Stockmann, H., Rudd, P. M., Polizzi, K. M., & Kontoravdi, C. (2023). CHOmpact: A reduced metabolic model of Chinese hamster ovary cells with enhanced interpretability. Biotechnology and Bioengineering, 1–15. https://doi.org/10.1002/bit.28459 Klimpel, M., Terrao, M., Ching, N., Climenti, V., Noll, T., Pirzas, V., & Laux, H. (2023). Development of a perfusion process for continuous lentivirus production using stable suspension producer cell lines. Biotechnology and Bioengineering, 1–17. https://doi.org/10.1002/bit.28413 Ladiwala, P., Dhara, V. G., Jenkins, J., Kuang, B., Hoang, D., Yoon, S., & Betenbaugh, M. J. (2023). Addressing amino acid-derived inhibitory metabolites and enhancing CHO cell culture performance through DOE-guided media modifications. Biotechnology and Bioengineering, 1–17. https://doi.org/10.1002/bit.28403 Leitner, K., Motheramgari, K., Borth, N., & Marx, N. (2023). Nanopore Cas9-targeted sequencing enables accurate and simultaneous identification of transgene integration sites, their structure and epigenetic status in recombinant Chinese hamster ovary cells. Biotechnology and Bioengineering, 1–16. https://doi.org/10.1002/bit.28382 Lorenzo, E., Miranda, L., Gòdia, F., & Cervera, L. (2023). Downstream process design for Gag HIV-1 based virus-like particles. Biotechnology and Bioengineering, 1–13. https://doi.org/10.1002/bit.28419 Martin, S., McConnell, R., Harrison, R., Jang, S. C., Sia, C. L., Kamerkar, S., Duboff, A., Jacob, L., Finn, J., & Estes, S. (2023). Therapeutic extracellular vesicle production is substantially increased by inhibition of cellular cholesterol biosynthesis. Biotechnology and Bioengineering, 1–15. https://doi.org/10.1002/bit.28401 Martorell, L., López-Fernández, A., García-Lizarribar, A., Sabata, R., Gálvez-Martín, P., Samitier, J., & Vives, J. (2023). Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds. Biotechnology and Bioengineering, 1–8. https://doi.org/10.1002/bit.28381 Naik, H. M., Kumar, S., Reddy, J. V., Gonzalez, J. E., McConnell, B. O., Dhara, V. G., Wang, T., Yu, M., Antoniewicz, M. R., & Betenbaugh, M. J. (2023). Chemical inhibitors of hexokinase-2 enzyme reduce lactate accumulation, alter glycosylation processing, and produce altered glycoforms in CHO cell cultures. Biotechnology and Bioengineering, 1–19. https://doi.org/10.1002/bit.28417 Park, S.-Y., Kim, S.-J., Park, C. H., Kim, J., & Lee, D. Y. (2023). Data-driven prediction models for forecasting multistep ahead profiles of mammalian cell culture toward bioprocess digital twins. Biotechnology and Bioengineering, 1–15. https://doi.org/10.1002/bit.28405 Schaefer, G., Balchunas, J., Charlebois, T., Erickson, J., Hart, R., Kedia, S. B., & Lee, K. H. (2023). Driving adoption of new technologies in biopharmaceutical manufacturing. Biotechnology and Bioengineering, 1–6. https://doi.org/10.1002/bit.28395 Schwarz, H., Lee, K., Castan, A., & Chotteau, V. (2023). Optimization of medium with perfusion microbioreactors for high density CHO cell cultures at very low renewal rate aided by design of experiments. Biotechnology and Bioengineering, 1–19. https://doi.org/10.1002/bit.28397 Strain, B., Morrissey, J., Antonakoudis, A., & Kontoravdi, C. (2023). How reliable are Chinese hamster ovary (CHO) cell genome-scale metabolic models? Biotechnology and Bioengineering, 1–19. https://doi.org/10.1002/bit.28366 Torres, M., Betts, Z., Scholey, R., Elvin, M., Place, S., Hayes, A., & Dickson, A. J. (2023). Long term culture promotes changes to growth, gene expression, and metabolism in CHO cells that are independent of production stability. Biotechnology and Bioengineering, 1–14. https://doi.org/10.1002/bit.28399 Virgolini, N., Silvano, M., Hagan, R., Correia, R., Alves, P. M., Clarke, C., Roldão, A., & Isidro, I. A. (2023). Impact of dual-baculovirus infection on the Sf9 insect cell transcriptome during rAAV production using single-cell RNA-seq. Biotechnology and Bioengineering, 1–13. https://doi.org/10.1002/bit.28377 Ben Yahia, B., Piednoir, A., Dahomais, T., Eggermont, S., & Paul, W. (2023). “Organized stress” for robust scale-up of intensified production process with fed-batch seed bioreactor. Biotechnology and Bioengineering, 1–14. https://doi.org/10.1002/bit.28396 Early ViewOnline Version of Record before inclusion in an issue ReferencesRelatedInformation
更多
查看译文
关键词
advanced cell technologies,gene,protein
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要