Osteogenic potential of PHB-lignin/cellulose nanofiber electrospun scaffold as a novel bone regeneration construct.

International journal of biological macromolecules(2023)

Cited 2|Views2
No score
Abstract
The electrospun scaffolds could mimic the highly hierarchical structure of extracellular matrix (ECM). Modern tissue engineering focuses on the properties of these microstructures, influencing the biological responses. This research investigates the variation of morphology, crystallinity, bioactivity, mechanical properties, contact angle, mass loss rate, roughness, cell behavior, biomineralization, and the efficacy of polyhydroxybutyrate (PHB)-based nanocomposite. Hence, 6 wt% lignin and 3 wt% cellulose nanofiber were added to the 9 wt% of PHB to prepare a novel electrospun nanocomposite structure (PLC). The outputs indicated more symmetrical circular fibers for PLC mat, higher surface roughness (326 to 389 nm), better hydrophilicity (120 to 60°), smaller crystal size (24 to 16 nm), and more reasonable biodegradability compared to PHB. These changes lead to the improvement of mechanical properties (toughness factor from 300 to 1100), cell behavior (viability from 60 to 100 %), bioactivity (from Ca/P ratio of 0.77 and 1.67), and higher level of alizarin red, and ALP enzyme secretion. Eventually, the osteopontin and alkaline phosphatase expression was also enhanced from ≃2.35 ± 0.15 and 2.1 ± 0.1 folds on the 1st day to ≃12.05 ± 0.35 and 7.95 ± 0.35 folds on 2nd week in PLCs. Accordingly, this newly developed structure could enhance biological responses and promote osteogenesis compared to PHB.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined