One-dimensional core-shell CoC@CoFe/C@PPy composites for high-efficiency microwave absorption

Zhengguo Jiao,Jinhu Hu,Mingliang Ma,Yanyan Liu, Jindi Zhao,Xingyue Wang, Sen Luan, Ling Zhang

Journal of colloid and interface science(2023)

引用 2|浏览4
暂无评分
摘要
In recent years, electromagnetic pollution has become more and more serious, and there is an urgent need for microwave absorbing materials with superior performance. Prussian blue analogue (PBA) is a metal organic framework material with the advantages of diverse morphology and tunable composition. Therefore, PBA has attracted a lot of attention in the field of microwave absorption. In this work, PBA was coated on the surface of carbon composites by hydrothermal method, and then PPy was compounded on its surface after carbonization treatment to construct hierarchical core-shell CoC@CoFe/C@PPy fibers. The fibers have Co-doped C composites as the core and CoFe/C decorated with PPy as the shell. This unique hierarchical structure and various microwave absorption mechanisms are described in detail. The microwave absorption performance is optimized by adjusting the filling of the sample. The best microwave absorption performances are achieved at 25 wt% filling of CoC@CoFe/C@PPy. At a thickness of just 1.69 mm, CoC@CoFe/C@PPy fiebrs have a minimum reflection loss (RLmin) of -64.32 dB. When the thickness is 1.88 mm, CoC@CoFe/C@PPy achieves a maximum effective absorption bandwidth (EABmax) of 5.38 GHz. The results indicate that the CoC@CoFe/C@PPy composite fibers have a great potential in the field of microwave absorption.
更多
查看译文
关键词
Core-shell structure,CoC@CoFe/C@PPy fibers,Electrostatic spinning,Microwave absorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要