lifex-ep: a robust and efficient software for cardiac electrophysiology simulations

BMC Bioinformatics(2023)

引用 0|浏览15
暂无评分
摘要
Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations are still in the process of achieving full maturity within the scientific community. This work introduces lifex-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both physiological and pathological conditions. lifex-ep employs the monodomain equation to model the heart's electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, lifex-ep integrates the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within lifex-fiber. This paper provides a concise overview of the mathematical models and numerical methods underlying lifex-ep, along with comprehensive implementation details and instructions for users. lifex-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of lifex-ep through various idealized and realistic simulations. lifex-ep offers a user-friendly and flexible interface. lifex-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface.
更多
查看译文
关键词
cardiac electrophysiology simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要