Analyte and matrix method extension of per- and polyfluoroalkyl substances in food and feed

Analytical and Bioanalytical Chemistry(2024)

Cited 0|Views4
No score
Abstract
The development and expansion of analytical methods for per- and polyfluoroalkyl substances (PFAS) in food are essential for the continued monitoring of the United States (US) food supply and assessments of dietary exposure. In March 2022, the European Union Reference Laboratory for Halogenated Persistent Organic Pollutants in Feed and Food (EURL POPs) released a guidance document covering priority PFAS of interest, including analytical method parameters and limits of quantification (LOQs). As a result, the Food and Drug Administration (FDA) began method extension work to incorporate ten new additional analytes to method C-010.02 including long-chain perfluorosulfonic acids, fluorotelomer sulfonates, and perfluorooctane sulfonamide. Four long-chain carboxylic acids were also validated across all foods, which were previously added to C-010.02 but only validated in seafood. In December 2022, the European Union published Commission Regulation 2022/2388, establishing maximum levels for perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) in certain foodstuffs, primarily fish, molluscs, crustaceans, and eggs. As a result, the FDA method was evaluated for performance in reaching LOQs defined in Commission Regulation (EU) 2022/1431. The FDA method was found to be able to reach all required LOQs for analytes in matrices with established maximum levels. Currently, method detection limits (MDLs), which are used by the FDA as the lower limit for reporting PFAS in surveillance samples, were in the same range as defined indicative levels. With further method modifications, required LOQs could be met in fruits, vegetables, and milk. Reaching the lower targeted LOQs for these food matrices will require moving the method to an instrument that can provide increased signal:noise gains at the lower limits of quantification. Graphical abstract
More
Translated text
Key words
PFAS,Food,LOQ,Method development
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined