Cellulose acetate/MOF film-based colorimetric ammonia sensor for non-destructive remote monitoring of meat product spoilage.

International journal of biological macromolecules(2023)

引用 1|浏览3
暂无评分
摘要
Herein, we designed an on-site and portable colorimetric assay using cellulose acetate polymeric films incorporated with HKUST-1 metal-organic framework while immersed in a solution of methyl red and brilliant cresyl blue organic dyes as an indicator for monitoring ammonia levels. Ammonia serves as a significant biomarker of food spoilage which falls under the category of volatile organic compounds (VOCs). The designed colorimetric solid-state sensor was comprehensively characterized using FE-SEM, EDS-mapping, XRD, FTIR, and contact angle analyses. The results confirmed the superior stability, water permeability, good crystallinity and desirable morphology of the prepared sensor platform. Additionally, customized smartphone was developed and applied for online signaling and colorimetric analysis. The findings demonstrated two linear ranges: 1-100 ppb and 0.1-1340 ppm with a detection limit of 0.02 ppm. The solid-state sensor exhibited high selectivity in the presence of other VOCs such as methanol, ethanol, acetone, 2-propanol, toluene, humidity, and hexane. It displayed acceptable repeatability in both inter-day (RSD = 3.38 %) and intraday (RSD = 3.86 %), long-term stability over 4 days as well as reusability over 3 cycles. We successfully applied this sensing platform for ammonia monitoring in spoiled meat foods including veal, fish and chicken. The results indicated favorable percentage recovery and repeatability, confirming the feasibility and potential applicability of this intelligent packaging system for monitoring freshness. The platform allows for real-time monitoring and data analysis via smartphone-based online signaling, providing a convenient and effective method for ensuring food quality.
更多
查看译文
关键词
On-site colorimetric sensor,Smartphone platform,Ammonia VOC,Metal-organic framework,Intelligent food packaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要