Adsorption of methyl orange by porous membranes prepared from deep eutectic supramolecular polymer-modified chitosan.

Environmental research(2023)

Cited 0|Views5
No score
Abstract
The fabrication of an adsorbent with excellent performance has been a focus of attention because of the toxicity, mutagenicity and carcinogenicity of methyl orange (MO)-containing wastewater discharged from the textile, tannery and pharmaceutical industries. In this study, chitosan (CS) membranes were modified with a deep eutectic supramolecular polymer (DESP), and adsorbent membranes with porous structures were prepared with polyethylene glycol (PEG). Microstructural characterization of the CS-DESP-PEG composite membranes with FT-IR, XRD and SEM showed that the membranes had amorphous crystalline structures and that hydrogen bonding interactions weakened the crystallinity and formed loose porous structures. Optimization of the chitosan to β-cyclodextrin ratio, pH, PEG proportion, MO concentration and adsorbent dose significantly improved the adsorption efficiencies of the membranes. The adsorption behaviours of the membranes were fit with pseudo-second-order adsorption kinetics and the Freundlich adsorption isotherm model. Regeneration experiments showed that the membranes were reusable multiple times and maintained good adsorption capacities.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined