Finite-Temperature Quantum Matter with Rydberg or Molecule Synthetic Dimensions

arXiv (Cornell University)(2023)

引用 0|浏览9
暂无评分
摘要
Synthetic dimension platforms offer unique pathways for engineering quantum matter. We compute the phase diagram of a many-body system of ultracold atoms (or polar molecules) with a set of Rydberg states (or rotational states) as a synthetic dimension, where the particles are arranged in real space in optical microtrap arrays and interact via dipole-dipole exchange interaction. Using mean-field theory, we find three ordered phases - two are localized in the synthetic dimension, predicted as zero-temperature ground states in Refs. [Sci. Rep., 8, 1 (2018) and Phys. Rev. A 99, 013624 (2019)], and a delocalized phase. We characterize them by identifying the spontaneously broken discrete symmetries of the Hamiltonian. We also compute the phase diagram as a function of temperature and interaction strength, for both signs of the interaction. For system sizes with more than six synthetic sites and attractive interactions, we find that the thermal phase transitions can be first or second order, which leads to a tri-critical point on the phase boundary. By examining the dependence of the tri-critical point and other special points of the phase boundary on the synthetic dimension size, we shed light on the physics for thermodynamically large synthetic dimension.
更多
查看译文
关键词
rydberg,quantum,molecule synthetic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要