Two-Qubit Gate Set Tomography with Fewer Circuits

arXiv (Cornell University)(2023)

引用 0|浏览15
暂无评分
摘要
Gate set tomography (GST) is a self-consistent and highly accurate method for the tomographic reconstruction of a quantum information processor's quantum logic operations, including gates, state preparations, and measurements. However, GST's experimental cost grows exponentially with qubit number. For characterizing even just two qubits, a standard GST experiment may have tens of thousands of circuits, making it prohibitively expensive for platforms. We show that, because GST experiments are massively overcomplete, many circuits can be discarded. This dramatically reduces GST's experimental cost while still maintaining GST's Heisenberg-like scaling in accuracy. We show how to exploit the structure of GST circuits to determine which ones are superfluous. We confirm the efficacy of the resulting experiment designs both through numerical simulations and via the Fisher information for said designs. We also explore the impact of these techniques on the prospects of three-qubit GST.
更多
查看译文
关键词
tomography,circuits,two-qubit
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要