An Optimal Control Approach to the Minimum-Time Trajectory Planning of Robotic Manipulators.

Robotics(2023)

引用 0|浏览3
暂无评分
摘要
Trajectory planning is a classic problem in robotics, with different approaches and optimisation objectives documented in the literature. Most of the time, the path is assumed, i.e., pre-defined, and optimisation consists of finding the timing of motion under a number of constraints. The focus of this work is on the minimum-time manoeuvring of robotic manipulators. A nonlinear optimal control approach is proposed that does not require the provision of either a pre-defined path or a pre-defined control structure and allows the inclusion of dynamic constraints. The solution (path and timing of motion) is obtained by transforming the optimal control problem into a nonlinear programming problem. The proposed approach is applied to a two-link manipulator for illustration purposes. The optimisation is carried out both without and with obstacles. The minimum-distance and minimum-time solutions are compared, and some classic results are obtained, including the trapezoidal pattern of the joint velocity and the bang-bang structure of the control torques. The effects of limitations on the jerks of actuators and the rate of change in torque inputs are discussed. The application to a four-link manipulator is also included to show the 'scalability' of the approach, together with a comparison with a classic path-and-motion-planning method, to highlight the characteristics and performance of the proposed approach. Finally, the possibility of enforcing a number of via-points along the path is demonstrated. The proposed method allows the computation of the path and motion simultaneously with the computation time, which is 1-30 times the manoeuvre time, on a standard PC with the current implementation.
更多
查看译文
关键词
robotics,optimal control,path planning,trajectory planning,minimum time,obstacle avoidance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要