A New Formulation of the Linear Equivalence Problem and Shorter LESS Signatures

ADVANCES IN CRYPTOLOGY, ASIACRYPT 2023, PT VII(2023)

引用 0|浏览2
暂无评分
摘要
The Linear Equivalence Problem (LEP) asks to find a linear isometry between a given pair of linear codes; in the Hamming weight this is known as a monomial map. LEP has been used in cryptography to design the family of LESS signatures, which includes also some advanced schemes, such as ring and identity-based signatures. All of these schemes are obtained applying the Fiat-Shamir transformation to a Sigma protocol, in which the prover's responses contain a description of how the monomial map acts on all code coordinates; such a description constitutes the vast majority of the signature size. In this paper, we propose a new formulation of LEP, which we refer to as Information-Set (IS)-LEP. Exploiting IS-LEP, it is enough for the prover to provide the description of the monomial action only on an information set, instead of all the coordinates. Thanks to this new formulation, we are able to drastically reduce signature sizes for all LESS signature schemes, without any relevant computational overhead. We prove that IS-LEP and LEP are completely equivalent (indeed, the same problem), which means that improvement comes with no additional security assumption, either.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要