Responses of Zooplankton Community Pattern to Environmental Factors along the Salinity Gradient in a Seagoing River in Tianjin, China

MICROORGANISMS(2023)

Cited 1|Views4
No score
Abstract
As the primary consumers in aquatic organisms, zooplankton play an important role in aquatic ecosystems. It is valuable for management and researchers to have an insight into the responses of zooplankton community patterns to environmental factors. In this study, RDA and variation partitioning analysis were adopted to determine the important environmental factors affecting zooplankton abundance and biomass, as well as the relative importance of different environmental factors. The findings reveal that TN (total nitrogen), WD (water depth), pH, and SAL (salinity) were all important abiotic factors shaping the zooplankton community pattern in the study area. TN affected protozoa by influencing Stentor amethystinus, while the effects of WD on copepods may have been mainly induced by the responses of Calanus sinicus and Paracyclopina nana. By inhibiting Stentor amethystinus and Vorticella lutea, pH significantly affected protozoa. In addition, Rotifera and copepods were affected by SAL mainly through the responses of Brachionus calyciflorus, Calanus sinicus, and Ectocyclops phaleratus. Importantly, fundamental alternations in the variation trends of zooplankton abundance and biomass along the salinity gradient were found when the salinity was approximately 4-5. By combining these results with the findings on phytoplankton responses to salinity in previous studies, it can be concluded that salinity may influence the river ecosystem by influencing zooplankton abundance and biomass rather than phytoplankton.
More
Translated text
Key words
zooplankton community pattern,salinity gradient,environmental factors,river
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined