Performance enhancement of integrating microbial electrolysis cell on two-stage anaerobic digestion of food waste: Electro-methanogenic stage versus electro-two stages.

Bioresource technology(2023)

引用 1|浏览5
暂无评分
摘要
The effects of microbial electrolysis cell (MEC) integration stage on two-stage anaerobic digestion (TSAD) of food waste (FW) were studied via semi-continuous experiments. The results showed that both MEC (with 1.2 V) integrations enhanced the performances of the TSADs, with the enhancement of electro-two stages being higher. The methane production of TSAD increased from 1.36 ± 0.04 L/L/d to 1.53 ± 0.05 L/L/d (electro-methanogenic stage) and 1.54 ± 0.04 L/L/d (electro-two stages) during the steady period. Electro-acidogenesis decreased propionic acid production and enhanced hydrogen production, while electro-methanogenesis promoted the conversion of volatile fatty acids to methane. The MEC integration improved energy recovery from the organic matter in FW by 11.65-16.15% and reduced the mass loss, with those of the electro-two stages being higher and the electro-methanogenic stage being dominant in the electro-two stages. The integration of MEC enhanced anaerobic fermentation by enriching Olsenella, norank_f__ST-12K33 and Proteiniphilum and improved methanogenesis by enriching Methanobacterium and Candidatus_Methanofastidiosum.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要