Ni-doped A-site-deficient La0.7Sr0.3Cr0.5Mn0.5O3-δ perovskite as anode of direct carbon solid oxide fuel cells

International Journal of Hydrogen Energy(2020)

引用 0|浏览0
暂无评分
摘要
A Ni-doped A-site-deficient La0.7Sr0.3Cr0.5Mn0.5O3-δ perovskite (N-LSCM) was synthesized and systematically characterized towards the application as the anode electrode for direct carbon solid oxide fuel cells (DC-SOFCs). The microstructure and electrochemical properties of N-LSCM under the operation conditions of DC-SOFCs have been evaluated. An in-situ exsolution of Ni nanoparticles on the N-LSCM perovskite matrix is found, revealing a maximum power density of 153 mW cm−2 for the corresponding DC-SOFC at 850 °C, compared to 114 mW cm−2 of the cell with stoichiometric LSCM. The introduction of Ni nanoparticles exsolution and A-site deficient is believed to boost the formation of highly mobile oxygen vacancies and electrochemical catalytic activity, and further improves the output performance of the DC-SOFC. It thus promises as a suitable anode candidate for DC-SOFCs with whole-solid-state configuration.
更多
查看译文
关键词
Direct carbon solid oxide fuel cell,Anode catalyst,Strontium and manganese co-doped lanthanum chromites,In situ exsolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要