Stem cell transcriptional profiles from mouse subspecies reveal cis-regulatory evolution at translation genes.

Noah M Simon, Yujin Kim,Diana M Bautista, James R Dutton,Rachel B Brem

bioRxiv : the preprint server for biology(2024)

引用 0|浏览4
暂无评分
摘要
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis-regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. As a complement, we used sequence analyses to find population-genomic signatures of selection in M. m. castaneus, at the upstream regions of the translation genes, including at transcription factor binding sites. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Together, our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要