Effects of tumour heterogeneous properties on modelling the transport of radiative particles.

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING(2023)

引用 0|浏览3
暂无评分
摘要
Dose calculation plays a critical role in radiotherapy (RT) treatment planning, and there is a growing need to develop accurate dose deposition models that incorporate heterogeneous tumour properties. Deterministic models have demonstrated their capability in this regard, making them the focus of recent treatment planning studies as they serve as a basis for simplified models in RT treatment planning. In this study, we present a simplified deterministic model for photon transport based on the Boltzmann transport equation (BTE) as a proof-of-concept to illustrate the impact of heterogeneous tumour properties on RT treatment planning. We employ the finite element method (FEM) to simulate the photon flux and dose deposition in real cases of diffuse intrinsic pontine glioma (DIPG) and neuroblastoma (NB) tumours. Importantly, in light of the availability of pipelines capable of extracting tumour properties from magnetic resonance imaging (MRI) data, we highlight the significance of such data. Specifically, we utilise cellularity data extracted from DIPG and NB MRI images to demonstrate the importance of heterogeneity in dose calculation. Our model simplifies the process of simulating a RT treatment system and can serve as a useful starting point for further research. To simulate a full RT treatment system, one would need a comprehensive model that couples the transport of electrons and photons.
更多
查看译文
关键词
tumour heterogeneous properties,particles,transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要