Two-dimensional lattice with an imaginary magnetic field

PHYSICAL REVIEW B(2024)

Cited 0|Views1
No score
Abstract
We introduce a two-dimensional non-Hermitian lattice model with an imaginary magnetic field and elucidate various unique features which are absent in Hermitian lattice models with real magnetic fields. To describe the imaginary magnetic field, we consider both the Landau gauge and the symmetric gauge, which are related by a generalized gauge transformation, changing not only the phase but also the amplitude of the wave function. We discuss the complex energy spectrum and the non-Hermitian Aharonov-Bohm effect as examples of properties which are due to the imaginary magnetic field independent of the generalized gauge transformation. We show that the energy spectrum does not converge as the lattice size is made larger, which comes from the intrinsic nonperiodicity of the model. However, we have found that the energy spectrum does converge if one fixes the length of one side and makes the other side longer; this asymptotic behavior can be understood in the framework of the non-Bloch band theory. We also find an analog of the Aharonov-Bohm effect; the net change of the norm of the wave function upon adiabatically forming a closed path is determined by the imaginary magnetic flux enclosed by the path, which provides an experimentally observable feature of the imaginary magnetic field.
More
Translated text
Key words
dimensional lattice
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined