Chrome Extension
WeChat Mini Program
Use on ChatGLM

Measurement of e + e − → ωπ + π − cross section at √(s) = 2 . 000 to 3 . 080 GeV

M. Ablikim,M. N. Achasov,P. Adlarson,S. Ahmed,M. Albrecht,R. Aliberti,A. Amoroso,M. R. An,Q. An,X. H. Bai,Y. Bai,O. Bakina,R. Baldini Ferroli,I. Balossino,Y. Ban,V. Batozskaya,D. Becker,K. Begzsuren,N. Berger,M. Bertani,D. Bettoni,F. Bianchi,J. Bloms,A. Bortone,I. Boyko,R. A. Briere,A. Brueggemann,H. Cai,X. Cai,A. Calcaterra,G. F. Cao,N. Cao,S. A. Cetin,J. F. Chang,W. L. Chang,G. Chelkov,C. Chen,G. Chen,H. S. Chen,M. L. Chen,S. J. Chen,T. Chen,X. R. Chen,X. T. Chen,Y. B. Chen,Z. J. Chen,W. S. Cheng,G. Cibinetto,F. Cossio,J. J. Cui,H. L. Dai,J. P. Dai,X. C. Dai,A. Dbeyssi,R. E. de Boer,D. Dedovich,Z. Y. Deng,A. Denig,I. Denysenko,M. Destefanis,F. De Mori,Y. Ding,J. Dong,L. Y. Dong,M. Y. Dong,X. Dong,S. X. Du,P. Egorov,Y. L. Fan,J. Fang,S. S. Fang,Y. Fang,R. Farinelli,L. Fava,F. Feldbauer,G. Felici,C. Q. Feng,J. H. Feng,K Fischer,M. Fritsch,C. D. Fu,Y. N. Gao,Yang Gao,I. Garzia,P. T. Ge,C. Geng,E. M. Gersabeck,A Gilman,K. Goetzen,L. Gong,W. X. Gong,W. Gradl,M. Greco,M. H. Gu,C. Y Guan,A. Q. Guo,A. Q. Guo,L. B. Guo,R. P. Guo,Y. P. Guo,A. Guskov,T. T. Han,W. Y. Han,X. Q. Hao,F. A. Harris,K. K. He,K. L. He,F. H. Heinsius,C. H. Heinz,Y. K. Heng,C. Herold,M. Himmelreich,T. Holtmann,G. Y. Hou,Y. R. Hou,Z. L. Hou,H. M. Hu,J. F. Hu,T. Hu,Y. Hu,G. S. Huang,K. X. Huang,L. Q. Huang,X. T. Huang,Y. P. Huang,Z. Huang,T. Hussain,N Hüsken,W. Imoehl,M. Irshad,S. Jaeger,S. Janchiv,Q. Ji,Q. P. Ji,X. B. Ji,X. L. Ji,Y. Y. Ji,H. B. Jiang,S. S. Jiang,X. S. Jiang,J. B. Jiao,Z. Jiao,S. Jin,Y. Jin,M. Q. Jing,T. Johansson,N. Kalantar-Nayestanaki,X. S. Kang,R. Kappert,M. Kavatsyuk,B. C. Ke,I. K. Keshk,A. Khoukaz,P. Kiese,R. Kiuchi,R. Kliemt,L. Koch,O. B. Kolcu,B. Kopf,M. Kuemmel,M. Kuessner,A. Kupsc,M. G. Kurth,W. Kühn,J. J. Lane,J. S. Lange,P. Larin,A. Lavania,L. Lavezzi,Z. H. Lei,H. Leithoff,M. Lellmann,T. Lenz,C. Li,C. Li,C. H. Li,Cheng Li,D. M. Li,F. Li,G. Li,H. Li,H. Li,H. B. Li,H. J. Li,H. N. Li,J. L. Li,J. Q. Li,J. S. Li,Ke Li,L. J Li,L. K. Li,Lei Li,M. H. Li,P. R. Li,S. X. Li,S. Y. Li,T. Li,W. D. Li,W. G. Li,X. H. Li,X. L. Li,Xiaoyu Li,Z. Y. Li,H. Liang,H. Liang,H. Liang,Y. F. Liang,Y. T. Liang,G. R. Liao,L. Z. Liao,J. Libby,A. Limphirat,C. X. Lin,D. X. Lin,T. Lin,B. J. Liu,C. X. Liu,D. Liu,F. H. Liu,Fang Liu,Feng Liu,G. M. Liu,H. M. Liu,Huanhuan Liu,Huihui Liu,J. B. Liu,J. L. Liu,J. Y. Liu,K. Liu,K. Y. Liu,Ke Liu,L. Liu,M. H. Liu,P. L. Liu,Q. Liu,S. B. Liu,T. Liu,T. Liu,W. M. Liu,X. Liu,Y. Liu,Y. B. Liu,Z. A. Liu,Z. Q. Liu,X. C. Lou,F. X. Lu,H. J. Lu,J. D. Lu,J. G. Lu,X. L. Lu,Y. Lu,Y. P. Lu,Z. H. Lu,C. L. Luo,M. X. Luo,T. Luo,X. L. Luo,X. R. Lyu,Y. F. Lyu,F. C. Ma,H. L. Ma,L. L. Ma,M. M. Ma,Q. M. Ma,R. Q. Ma,R. T. Ma,X. X. Ma,X. Y. Ma,Y. Ma,F. E. Maas,M. Maggiora,S. Maldaner,S. Malde,Q. A. Malik,A. Mangoni,Y. J. Mao,Z. P. Mao,S. Marcello,Z. X. Meng,J. G. Messchendorp,G. Mezzadri,H. Miao,T. J. Min,R. E. Mitchell,X. H. Mo,N. Yu. Muchnoi,H. Muramatsu,S. Nakhoul,Y. Nefedov,F. Nerling,I. B. Nikolaev,Z. Ning,S. Nisar,S. L. Olsen,Q. Ouyang,S. Pacetti,X. Pan,Y. Pan,A. Pathak,A. Pathak,M. Pelizaeus,H. P. Peng,K. Peters,J. Pettersson,J. L. Ping,R. G. Ping,S. Plura,S. Pogodin,R. Poling,V. Prasad,H. Qi,H. R. Qi,M. Qi,T. Y. Qi,S. Qian,W. B. Qian,Z. Qian,C. F. Qiao,J. J. Qin,L. Q. Qin,X. P. Qin,X. S. Qin,Z. H. Qin,J. F. Qiu,S. Q. Qu,S. Q. Qu,K. H. Rashid,K. Ravindran,C. F. Redmer,K. J. Ren,A. Rivetti,V. Rodin,M. Rolo,G. Rong,Ch. Rosner,M. Rump,H. S. Sang,A. Sarantsev,Y. Schelhaas,C. Schnier,K. Schoenning,M. Scodeggio,K. Y. Shan,W. Shan,X. Y. Shan,J. F. Shangguan,L. G. Shao,M. Shao,C. P. Shen,H. F. Shen,X. Y. Shen,B.-A. Shi,H. C. Shi,R. S. Shi,X. Shi,X. D Shi,J. J. Song,W. M. Song,Y. X. Song,S. Sosio,S. Spataro,F. Stieler,K. X. Su,P. P. Su,Y.-J. Su,G. X. Sun,H. K. Sun,J. F. Sun,L. Sun,S. S. Sun,T. Sun,W. Y. Sun,X Sun,Y. J. Sun,Y. Z. Sun,Z. T. Sun,Y. H. Tan,Y. X. Tan,C. J. Tang,G. Y. Tang,J. Tang,L. Y Tao,Q. T. Tao,J. X. Teng,V. Thoren,W. H. Tian,Y. T. Tian,I. Uman,B. Wang,D. Y. Wang,F. Wang,H. J. Wang,H. P. Wang,K. Wang,L. L. Wang,M. Wang,M. Z. Wang,Meng Wang,S. Wang,T. J. Wang,W. Wang,W. H. Wang,W. P. Wang,X. Wang,X. F. Wang,X. L. Wang,Y. D. Wang,Y. F. Wang,Y. Q. Wang,Y. Y. Wang,Ying Wang,Z. Wang,Z. Y. Wang,Ziyi Wang,Zongyuan Wang,D. H. Wei,F. Weidner,S. P. Wen,D. J. White,U. Wiedner,G. Wilkinson,M. Wolke,L. Wollenberg,J. F. Wu,L. H. Wu,L. J. Wu,X. Wu,X. H. Wu,Y. Wu,Z. Wu,L. Xia,T. Xiang,H. Xiao,S. Y. Xiao,Y. L. Xiao,Z. J. Xiao,X. H. Xie,Y. G. Xie,Y. H. Xie,Z. P. Xie,T. Y. Xing,C. F. Xu,C. J. Xu,G. F. Xu,Q. J. Xu,S. Y. Xu,W. Xu,X. P. Xu,Y. C. Xu,F. Yan,L. Yan,W. B. Yan,W. C. Yan,H. J. Yang,H. X. Yang,L. Yang,S. L. Yang,Y. X. Yang,Yifan Yang,Zhi Yang,M. Ye,M. H. Ye,J. H. Yin,Z. Y. You,B. X. Yu,C. X. Yu,G. Yu,J. S. Yu,T. Yu,C. Z. Yuan,L. Yuan,S. C. Yuan,X. Q. Yuan,Y. Yuan,Z. Y. Yuan,C. X. Yue,A. A. Zafar,X. Zeng,Y. Zeng,Y. H. Zhan,A. Q. Zhang,B. L. Zhang,B. X. Zhang,G. Y. Zhang,H. Zhang,H. H. Zhang,H. H. Zhang,H. Y. Zhang,J. L. Zhang,J. Q. Zhang,J. W. Zhang,J. Y. Zhang,J. Z. Zhang,Jianyu Zhang,Jiawei Zhang,L. M. Zhang,L. Q. Zhang,Lei Zhang,P. Zhang,Shulei Zhang,X. D. Zhang,X. M. Zhang,X. Y. Zhang,X. Y. Zhang,Y. Zhang,Y. T. Zhang,Y. H. Zhang,Yan Zhang,Yao Zhang,Z. H. Zhang,Z. Y. Zhang,Z. Y. Zhang,G. Zhao,J. Zhao,J. Y. Zhao,J. Z. Zhao,Lei Zhao,Ling Zhao,M. G. Zhao,Q. Zhao,S. J. Zhao,Y. B. Zhao,Y. X. Zhao,Z. G. Zhao,A. Zhemchugov,B. Zheng,J. P. Zheng,Y. H. Zheng,B. Zhong,C. Zhong,X. Zhong,L. P. Zhou,Q. Zhou,X. Zhou,X. K. Zhou,X. R. Zhou,X. Y. Zhou,Y. Z. Zhou,A. N. Zhu,J. Zhu,K. Zhu,K. J. Zhu,S. H. Zhu,T. J. Zhu,W. J. Zhu,W. J. Zhu,Y. C. Zhu,Z. A. Zhu,B. S. Zou,J. H. Zou

Journal of High Energy Physics(2023)

Cited 0|Views5
No score
Abstract
bstract A partial wave analysis on the process e + e − → ωπ + π − is performed using 647 pb − 1 of data sample collected by using the BESIII detector operating at the BEPCII storage ring at center-of-mass (c.m.) energies from 2.000 GeV to 3.080 GeV. The Born cross section of the e + e − → ωπ + π − process is measured, with precision improved by a factor of 3 compared to that of previous studies. A structure near 2.25 GeV is observed in the energy-dependent cross sections of e + e − → ωπ + π − and ωπ 0 π 0 with a statistical significance of 7.6 σ , and its determined mass and width are 2232 ± 19 ± 27 MeV /c 2 and 93 ± 53 ± 20 MeV, respectively, where the first and second uncertainties are statistical and systematic, respectively. By analyzing the cross sections of subprocesses e + e − → ωf 0 (500), ωf 0 (980), ωf 0 (1370), ωf 2 (1270), and b 1 (1235) π , a structure, with mass M = 2200 ± 11 ± 17 MeV/ c 2 and width Γ = 74 ± 20 ± 24 MeV, is observed with a combined statistical significance of 7.9 σ . The measured resonance parameters will help to reveal the nature of vector states around 2.25 GeV.
More
Translated text
Key words
e+-e− Experiments,Particle and Resonance Production,Vector Boson Production
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined