Large-Area Printed Oxide Film Sensors Enabling Ultrasensitive and Dual Electrical/Colorimetric Detection of Hydrogen at Room Temperature.

ACS sensors(2023)

引用 1|浏览10
暂无评分
摘要
Commercial hydrogen (H2) sensors operate at high temperatures, which increases power consumption and poses a safety risk owing to the flammable nature of H2. Here, a polymer-noble metal-metal oxide film is fabricated using the spin-coating and printing methods to realize a highly sensitive, low-voltage operation, wide-operating-concentration, and near-monoselective H2 sensor at room temperature. The H2 sensors with an optimized thickness of Pd nanoparticles and SnO2 showed an extremely high response of 16,623 with a response time of 6 s and a recovery time of 5 s at room temperature and 2% H2. At the same time, printed flexible sensors demonstrate excellent sensitivity, with a response of 2300 at 2% H2. The excellent sensing performance at room temperature is due to the optimal SnO2 thickness, corresponding to the Debye length and the oxygen and H2 spillover caused by the optimized coverage of the Pd catalyst. Furthermore, multistructures of WO3 and SnO2 films are used to fabricate a new type of dual-signal sensor, which demonstrated simultaneous conductance and transmittance, i.e., color change. This work provides an effective strategy to develop robust, flexible, transparent, and long-lasting H2 sensors through large-area printing processes based on polymer-metal-metal oxide nanostructures.
更多
查看译文
关键词
hydrogen,electrical/colorimetric detection,large-area
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要