High-dimensional Optimal Density Control with Wasserstein Metric Matching

2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC(2023)

引用 0|浏览13
暂无评分
摘要
We present a novel computational framework for density control in high-dimensional state spaces. The considered dynamical system consists of a large number of indistinguishable agents whose behaviors can be collectively modeled as a time-evolving probability distribution. The goal is to steer the agents without collision from an initial distribution to reach (or approximate) a given target distribution within a fixed time horizon at minimum cost. To tackle this problem, we propose to model the drift as a nonlinear reduced-order model, such as a deep network, and enforce the matching to the target distribution at terminal time either strictly or approximately using the Wasserstein metric. The resulting saddle-point problem can be solved by an effective numerical algorithm that leverages the excellent representation power of deep networks and fast automatic differentiation for this challenging high-dimensional control problem. A variety of numerical experiments were conducted to demonstrate the performance of our method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要