Minimal AC injection into Carbon Nanotubes

arxiv(2023)

Cited 0|Views7
No score
Abstract
We study theoretically the effect of electronic interactions in 1d systems on electron injection using periodic Lorentzian pulses, known as Levitons. We consider specifically a system composed of a metallic single-wall carbon nanotube, described with the Luttinger liquid formalism, a scanning tunneling microscope (STM) tip, and metallic leads. Using the out-of-equilibrium Keldysh Green function formalism, we compute the current and current noise in the system. We prove that the excess noise vanishes when each Leviton injects an integer number of electrons from the STM tip into the nanotube. This extends the concept of minimal injection with Levitons to strongly correlated, uni-dimensional non-chiral systems. We also study the time-dependent current profile, and show how it is the result of interferences between pulses non-trivially reflected at the nanotube/lead interface.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined