Nano hydroxyapatite pre-treatment effectively reduces Cd accumulation in rice (Oryza sativa L.) and its impact on paddy microbial communities.

Chemosphere(2023)

引用 1|浏览1
暂无评分
摘要
Cadmium (Cd) contamination in paddy soil has become a worldwide concern and severely endangered human health. Nano hydroxyapatite (n-HAP) is a practical material to manage paddy Cd pollution, but its dosage should not be excessive. Based on previous studies, we validated the effect of n-HAP pre-treatment on rice Cd uptake in pot and field experiments. The results indicated that n-HAP pre-treatment effectively restricted Cd translocation in the soil-rice system. In pot experiment, when soil n-HAP concentration was 5000 mg/kg, the Cd content in the grains of n-HAP pre-treated rice was 0.171 mg/kg, decreased by 29.3% compared with normal rice (0.242 mg/kg). In field experiment, when soil n-HAP concentration was 20,000 mg/kg, the Cd content in the grains of n-HAP pre-treated rice was 0.156 mg/kg, decreased by 35.3% compared with normal rice (0.241 mg/kg). The primary mechanism was that n-HAP pre-treatment altered the formation and composition of iron plaque and therefore enhanced the Cd binding ability of iron plaque. The available N and P content and urease activity in paddy field were increased. We further investigated the impact of n-HAP on the diversity and structure of paddy microbial communities. The Chao1 and Shannon diversity indices showed no significant difference. The relative abundance of Actinobacteria and Proteobacteria was significantly decreased by n-HAP, indicating that Cd pollution might be alleviated. Desulfobacterota, Gemmatimonadota, and Geobacteraceae were significantly enriched by n-HAP. The declining relative abundance of Basidiomycota and the increasing relative abundance of other fungal taxa also suggested that n-HAP could alleviate Cd toxicity in soil.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要