Processing of attentional and emotional stimuli depends on retrospective response of foot pressure: Conceptualizing neuron-cognitive distribution in human brain.

Computers in biology and medicine(2023)

引用 0|浏览1
暂无评分
摘要
Cognitive function of human brain requires temporal execution of emotional or attentional tasks, or their inter-dependence influences. Smooth execution of such tasks requires spontaneous distribution of cognitive load at specific regions of brain based on its classification. A strong connectivity between peripheral sensors and central nervous system is thought to assist the cognitive load distribution effectively. Novelty of current study evaluates the modulation of foot pressure and its mapping with distributed cognitive load while executing attentional biased emotional tasks. Emotional stimulus in form of happy and sad faces with attentional paradigm drawn on them were used in the study. Behavioral results were measured with respect to the analysis of response time (RT) and response accuracy (%). Neurological signals were acquired using 10-channel EEG data acquisition system, whereas, another 6 channels were used to measure foot pressure in the left and right feet at three different locations of foot. Acquired signals were further analyzed in time and frequency domains to interpret the cognitive load distribution, and the influence of foot pressure on distribution of cognitive loads. We found that the foot pressure accelerated the response accuracy rate in attending the local scope of attention, which was not in the case of global scope of attention. This means that the global attention does not require any pressure from peripheral sensory neurons. Our event related potential (ERP) results revealed that the early sensory negative N100 characterized the processing of global scope of attention coupled with high-foot pressure. However, the late positive peak of P300 and P600 associated with local scope of attention along with high-foot pressure. The global scope of attention with low-foot pressure modulates delta and theta oscillations. These results largely contribute to the literature on cognitive neuroscience of attention and it corelation with the peripheral sensory foot pressure.
更多
查看译文
关键词
Cognitive load,Neurological signal,Peripheral sensor,Foot pressure,Emotional stimulus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要