Chrome Extension
WeChat Mini Program
Use on ChatGLM

Compressive loading affects endothelial cell migration: a numerical study

2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG(2023)

Cited 0|Views8
No score
Abstract
This study aims to investigate the impact of compressive loading on endothelial cell migration pattern in angiogenesis using a meshless discretization technique, combined with a reaction-diffusion formulation. In silico models are highly valuable for understanding the dynamics of biological systems, and numerical models allow for testing different laboratory protocols and deducing which ones produce the best outcomes. In the proposed model, angiogenesis was simulated in response to a reaction-diffusion equation for vascular endothelial growth factor (VEGF) in a 5x5 mm(2) square domain and using the Radial Point Interpolation Method (RPIM). The compressive loading was applied as a hydrostatic pressure of around 0.0067 MPa, in a specific zone in the domain to simulate the domain stress- strain interactions. The effect of compressive loading on angiogenesis sprouting patterns is analysed, and the results show that compression load affects the VEGF diffusion gradient and increases the VEGF concentration in the region where the compression was applied, causing the capillary to move away from the VEGF release region. Overall, this study sheds light on the role of mechanical stimuli in angiogenesis and provides a basis for further research in this area.
More
Translated text
Key words
Angiogenesis modelling,compressive loading,Radial Point Interpolation Method
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined