Proof-of-Principle Experiment on the Dynamic Shell Formation for Inertial Confinement Fusion.

I V Igumenshchev,W Theobald,C Stoeckl,R C Shah, D T Bishel,V N Goncharov, M J Bonino,E M Campbell, L Ceurvorst, D A Chin,T J B Collins, S Fess,D R Harding, S Sampat,N R Shaffer,A Shvydky, E A Smith,W T Trickey, L J Waxer,A Colaïtis, R Liotard, P J Adrian, S Atzeni,F Barbato, L Savino, N Alfonso,A Haid,Mi Do

Physical review letters(2023)

引用 2|浏览20
暂无评分
摘要
In the dynamic-shell (DS) concept [V. N. Goncharov et al., Novel Hot-Spot Ignition Designs for Inertial Confinement Fusion with Liquid-Deuterium-Tritium Spheres, Phys. Rev. Lett. 125, 065001 (2020).PRLTAO0031-900710.1103/PhysRevLett.125.065001] for laser-driven inertial confinement fusion the deuterium-tritium fuel is initially in the form of a homogeneous liquid inside a wetted-foam spherical shell. This fuel is ignited using a conventional implosion, which is preceded by a initial compression of the fuel followed by its expansion and dynamic formation of a high-density fuel shell with a low-density interior. This Letter reports on a scaled-down, proof-of-principle experiment on the OMEGA laser demonstrating, for the first time, the feasibility of DS formation. A shell is formed by convergent shocks launched by laser pulses at the edge of a plasma sphere, with the plasma itself formed as a result of laser-driven compression and relaxation of a surrogate plastic-foam ball target. Three x-ray diagnostics, namely, 1D spatially resolved self-emission streaked imaging, 2D self-emission framed imaging, and backlighting radiography, have shown good agreement with the predicted evolution of the DS and its stability to low Legendre mode perturbations introduced by laser irradiation and target asymmetries.
更多
查看译文
关键词
dynamic shell formation,fusion,proof-of-principle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要