Theexpa1-1mutant reveals a new biophysical lateral root organogenesis checkpoint

crossref(2018)

Cited 0|Views3
No score
Abstract
ABSTRACTIn plants, post-embryonic formation of new organs helps shape the adult organism. This requires the tight regulation of when and where a new organ is formed, and a coordination of the underlying cell divisions. To build a root system, new lateral roots are continuously developing, and this process requires asymmetric cell division in adjacent pericycle cells. Characterization of anexpansin a1(expa1) mutant has revealed a novel checkpoint during lateral root formation. Specifically, a minimal pericycle width was found to be necessary and sufficient to trigger asymmetric pericycle cell divisions during auxin-driven lateral root formation. We conclude that a localized radial expansion of adjacent pericycle cells is required to position the asymmetric cell divisions and generate a core of small daughter cells, which is a prerequisite for lateral root organogenesis.SIGNFICANCE STATEMENTOrgan formation is an essential process in plants and animals, driven by cell division and cell identity establishment. Root branching, where lateral roots form along the primary root axis, increases the root system and aids capture of water and nutrients. We have discovered that tight control of cell width is necessary to co-ordinate asymmetric cell divisions in cells that give rise to a new lateral root organ. While biomechanical processes have been shown to play a role in plant organogenesis, including lateral root formation, our data give new mechanistic insights into the cell size checkpoint during lateral root initiation.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined