Estimation of bovine pelvic limb inertial properties using an elliptical model

crossref(2016)

Cited 0|Views0
No score
Abstract
Development of new techniques and appropriate equipment for treatment of long bone fractures in bovines has been an objective of recent veterinary research. Accurate estimates of body segment inertial parameters (BSIP) are essential for determination of forces acting on limbs and play an important role in an appropriate prosthesis development. The aim of the present study is to examine the mass distribution properties and to suggest a geometric model of bovine right pelvic limb based on these mass distribution properties. Four Holstein breed male calves were filmed by one high-speed camera while walking on a force plate. The animals and two cadaveric specimens were examined in axial computer tomography scanner and the images were exported in DICOM (Digital Imaging and Communication in Medicine) format into a set of software and a computational model was obtained. This model provided information for geometric model construction. Measures of segmental mass, positions of segmental center of mass (CoM) and longitudinal moment of inertia (MoI) of segments of the right pelvic limb were estimated based on the proposed model. These estimates were compared with measurements obtained from a computational model and showed consistent accuracy. This study not only presents a technique that may be applied to other body segments and to different species, but also provides insight into bovine musculoskeletal system necessary to improve the models for dynamic analysis of movement and our understanding of bovine gait.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined