Comparative proteomic analysis of regenerative acellular matrices: The effects of tissue source and processing method.

Huidan Wang,Wendell Q Sun

Journal of biomedical materials research. Part B, Applied biomaterials(2023)

引用 0|浏览2
暂无评分
摘要
Acellular tissue matrices are used in regenerative medicine from weak tissue re-enforcement to cosmetic augmentation. However, proteomic signatures leading to different clinical outcomes among matrices are not well understood. In an attempt to investigate the effects of tissue source and processing method, we examined by liquid chromatography tandem mass spectrometry (LC-MS/MS) the proteomic profiles of 12 regulatory agency-approved acellular matrices (AlloMax, AlloDerm, CollaMend, Heal-All, JayyaLife, ReGen, Renov, Strattice, SurgiMend, Surgisis, UniTrump and Vidasis). The compositions of acellular matrices varied greatly with the number of identified proteins ranging from 7 to 106. The content of individual proteins was between 0.0001% and 95.8% according to their abundances measured by the M/Z signal intensities. Most acellular matrices still contained numerous cellular proteins. AlloMax, AlloDerm, ReGen, Strattice, SurgiMend and Surgisis retained necessary structural and functional proteins to form the extracellular protein-protein interaction networks for cell adhesion, proliferation and tissue regeneration, whereas CollaMend, Heal-All, JayyaLife, Renov, UniTrump and Vidasis had only retained certain structural collagens. Principal component analysis showed that proteomic variations among acellular matrices were largely attributed to tissue source and processing method. Differences in proteomic profiles among acellular matrices offers insights into molecular interpretation for different clinical outcomes, and can serve as useful references for rational design of regenerative bio-scaffolds.
更多
查看译文
关键词
regenerative acellular matrices,comparative proteomic analysis,tissue source
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要