Highly efficient detection of deoxynivalenol and zearalenone in the aqueous environment based on nanoenzyme-mediated lateral flow immunoassay combined with smartphone

Journal of Environmental Chemical Engineering(2023)

引用 0|浏览2
暂无评分
摘要
Deoxynivalenol (DON) and zearalenone (ZEN) pose a serious threat to human health, and have been frequently detected in the aqueous environment. To protect consumers from the harm of mycotoxins, a nanozyme-mediated multiplexed lateral flow immunoassay (LFIA) integrated with a smartphone was developed for rapid, highly sensitive and simultaneous quantitative detection of DON and ZEN in the aqueous environment. Highly efficient peroxidase mimicking core-shell Au@Pt nanozymes were synthesized by one-pot method, and then used as signal amplification to highly improve sensitivity of the detection, while a smartphone-based quantitative detection device could rapidly quantify results to improve the detection efficiency of the LIFA for on-site detection. After optimization, the detection time of the assay was 10 min, and the detection limits of the LIFA for DON/ZEN were 0.24/0.04 ng/mL, which were improved 416 and 150 folds compared to the conventional gold nanoparticles (GNPs)-based LFIA. Moreover, there was no obvious cross-reaction with other related mycotoxins, indicating that LFIA had a high specificity. The average recoveries of DON and ZEN from corn, wheat and three water samples were obtained from 94.3 % to 107.9 % with relative standard deviations of 0.2–7.6 %. Furthermore, the accuracy and reliability of the LIFA were evaluated with three spiked water samples, and the results presented good correlations with analytic results from the enzyme-linked immunosorbent assay (R2 =0.988 for DON, and 0.983 for ZEN). The results indicate the proposed LIFA was potentially a rapid, on-site simultaneous and highly sensitive method for DON and ZEN detection in the aqueous environment.
更多
查看译文
关键词
Lateral flow immunoassay, Deoxynivalenol and zearalenone, Nanozyme, Smartphone, Aqueous environment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要