Predicting the electronic and mechanical properties of 2D diamond-like carbon and cubic boron nitride intercalated structures

Diamond and Related Materials(2023)

引用 0|浏览7
暂无评分
摘要
Two-dimensional (2D) diamond-like (Diam) carbon (C) and cubic boron nitride (cBN) with different interface atoms named as BCB, BCN and NCN are investigated by first principal studies. The calculations reveal that the C-B bond may be the most energetically favored bonding configuration in the Diam/cBN epitaxy. The electronic properties can be tuned not only by different interfacial atoms, but also by varying the number of intermediate Clayers. The application of negative stress transforms the 2D Diam/cBN intercalated structures from a semiconductor to a metal. The Young's and shear module indicate prominent mechanical properties for these intercalated structures, in particular for BCN that can be compared to bulk. The predicted 2D Diam/cBN intercalated structures presented here show that the stacking order, the number of intermediate C-layers, and the use of strain-induced structures can open new avenues for the application of novel ultra-thin and ultra-tough electronic reserve material devices.
更多
查看译文
关键词
Two-dimensional,Diamond like carbon,Cubic BN,Intercalated structure,Electronic and mechanical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要