Interspersed expression of CUP-SHAPED COTYLEDON2 and REDUCED COMPLEXITY shapes Cardamine hirsuta complex leaf form.

Current biology : CB(2023)

引用 0|浏览12
暂无评分
摘要
How genetically regulated growth shapes organ form is a key problem in developmental biology. Here, we investigate this problem using the leaflet-bearing complex leaves of Cardamine hirsuta as a model. Leaflet development requires the action of two growth-repressing transcription factors: REDUCED COMPLEXITY (RCO), a homeodomain protein, and CUP-SHAPED COTYLEDON2 (CUC2), a NAC-domain protein. However, how their respective growth-repressive actions are integrated in space and time to generate complex leaf forms remains unknown. By using live imaging, we show that CUC2 and RCO are expressed in an interspersed fashion along the leaf margin, creating a distinctive striped pattern. We find that this pattern is functionally important because forcing RCO expression in the CUC2 domain disrupts auxin-based marginal patterning and can abolish leaflet formation. By combining genetic perturbations with time-lapse imaging and cellular growth quantifications, we provide evidence that RCO-mediated growth repression occurs after auxin-based leaflet patterning and in association with the repression of cell proliferation. Additionally, through the use of genetic mosaics, we show that RCO is sufficient to repress both cellular growth and proliferation in a cell-autonomous manner. This mechanism of growth repression is different to that of CUC2, which occurs in proliferating cells. Our findings clarify how the two growth repressors RCO and CUC2 coordinate to subdivide developing leaf primordia into distinct leaflets and generate the complex leaf form. They also indicate different relationships between growth repression and cell proliferation in the patterning and post-patterning stages of organogenesis.
更多
查看译文
关键词
complex leaf development,homeobox gene,leaf marginal patterning,growth,genetic mosaics,time-lapse
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要