State of the Art in Development of Heat Exchanger Geometry Optimization and Different Storage Bed Designs of a Metal Hydride Reactor

Materials (Basel, Switzerland)(2023)

Cited 0|Views3
No score
Abstract
The efficient operation of a metal hydride reactor depends on the hydrogen sorption and desorption reaction rate. In this regard, special attention is paid to heat management solutions when designing metal hydride hydrogen storage systems. One of the effective solutions for improving the heat and mass transfer effect in metal hydride beds is the use of heat exchangers. The design of modern cylindrical-shaped reactors makes it possible to optimize the number of heat exchange elements, design of fins and cooling tubes, filter arrangement and geometrical distribution of metal hydride bed elements. Thus, the development of a metal hydride reactor design with optimal weight and size characteristics, taking into account the efficiency of heat transfer and metal hydride bed design, is the relevant task. This paper discusses the influence of different configurations of heat exchangers and metal hydride bed for modern solid-state hydrogen storage systems. The main advantages and disadvantages of various configurations are considered in terms of heat transfer as well as weight and size characteristics. A comparative analysis of the heat exchangers, fins and other solutions efficiency has been performed, which makes it possible to summarize and facilitate the choice of the reactor configuration in the future.
More
Translated text
Key words
hydrogen energy,metal hydride,metal hydride reactor,heat exchanger,heat transfer,thermal management
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined