Chrome Extension
WeChat Mini Program
Use on ChatGLM

Porous prussian blue analogs derived nickel-iron bimetallic phosphide nanocubes on conductive hollow mesoporous carbon nanospheres for stable and flexible high-performance supercapacitor electrode.

Journal of colloid and interface science(2023)

Cited 3|Views4
No score
Abstract
Nickel-iron bimetallic phosphide (Ni-Fe-P) is the ideal battery-type materials for supercapacitor in virtue of high theoretical specific capacitance. Nevertheless, its actual adhibition is astricted on account of inferior rate capability and cyclic stability. Herein, we constructed hierarchical core-shell nanocomposites with hollow mesoporous carbon nanospheres (HMCS) packaged via prussian blue analogs derived Ni-Fe-P nanocubes (Ni-Fe-P@HMCS), as a positive electrode for hybrid supercapacitor (HSC). Profiting from the cooperative effects of Ni-Fe-P nanocubes with small size and good dispersibility, and HMCS with continuously conductive network, the Ni-Fe-P@HMCS composite electrode with abundantly porous architectures presents an ultrahigh gravimetric specific capacity for 739.8 C g-1 under 1 A g-1. Specially, the Ni-Fe-P@HMCS electrode presents outstanding rate capability of 78.4% (1 A g-1 to 20 A g-1) and cyclic constancy for 105% after 5000 cycles. Density functional theory implies that the composite electrode possesses higher electrical conductivity than bare Ni-Fe-P electrode by reason of the incremental charge density, and the electrons transferring from NiFe3P4 to HMCS layers. Additionally, the assembled Ni-Fe-P@HMCS//HMCS HSC facility delivers the high energy density for 64.1 Wh kg-1, remarkable flexibility and mechanical stability. Thus, this work proffers a viable and efficacious measure to construct ultra-stability electrode for high-performance portable electronic facilities.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined