Hypoxia-cleavable and specific targeted nanomedicine delivers epigenetic drugs for enhanced treatment of breast cancer and bone metastasis

Journal of nanobiotechnology(2023)

引用 0|浏览9
暂无评分
摘要
Breast cancer bone metastasis has become a common cancer type that still lacks an effective treatment method. Although epigenetic drugs have demonstrated promise in cancer therapy, their nontargeted accumulation and drug resistance remain nonnegligible limiting factors. Herein, we first found that icaritin had a strong synergistic effect with an epigenetic drug (JQ1) in the suppression of breast cancer, which could help to relieve drug resistance to JQ1. To improve tumor-targeted efficacy, we developed a hypoxia-cleavable, RGD peptide-modified poly(D,L-lactide-co-glycolide) (PLGA) nanoparticle (termed ARNP) for the targeted delivery of JQ1 and icaritin. The decoration of long cleavable PEG chains can shield RGD peptides during blood circulation and reduce cellular uptake at nonspecific sites. ARNP actively targets breast cancer cells via an RGD-αvβ3 integrin interaction after PEG chain cleavage by responding to hypoxic tumor microenvironment. In vitro and in vivo assays revealed that ARNP exhibited good biodistribution and effectively suppressed primary tumor and bone metastasis. Meanwhile, ARNP could alleviate bone erosion to a certain extent. Furthermore, ARNP significantly inhibited pulmonary metastasis secondary to bone metastasis. The present study suggests that ARNP has great promise in the treatment of breast cancer and bone metastasis due to its simple and practical potential.
更多
查看译文
关键词
Bone metastasis,Epigenetic drug,Nanomedicine,Drug delivery,Hypoxia responsive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要