Chrome Extension
WeChat Mini Program
Use on ChatGLM

Towards a microfluidic H295R steroidogenesis assay—biocompatibility study and steroid detection on a thiol-ene-based chip

Analytical and bioanalytical chemistry(2023)

Cited 0|Views5
No score
Abstract
The development of cell-based microfluidic assays offers exciting new opportunities in toxicity testing, allowing for integration of new functionalities, automation, and high throughput in comparison to traditional well-plate assays. As endocrine disruption caused by environmental chemicals and pharmaceuticals represents a growing global health burden, the purpose of the current study was to contribute towards the miniaturization of the H295R steroidogenesis assay, from the well-plate to the microfluidic format. Microfluidic chip fabrication with the established well-plate material polystyrene (PS) is expensive and complicated; PDMS and thiol-ene were therefore tested as potential chip materials for microfluidic H295R cell culture, and evaluated in terms of cell attachment, cell viability, and steroid synthesis in the absence and presence of collagen surface modification. Additionally, spike-recovery experiments were performed, to investigate potential steroid adsorption to chip materials. Cell aggregation with poor steroid recoveries was observed for PDMS, while cells formed monolayer cultures on the thiol-ene chip material, with cell viability and steroid synthesis comparable to cells grown on a PS surface. As thiol-ene overall displayed more favorable properties for H295R cell culture, a microfluidic chip design and corresponding cell seeding procedure were successfully developed, achieving repeatable and uniform cell distribution in microfluidic channels. Finally, H295R perfusion culture on thiol-ene chips was investigated at different flow rates (20, 10, and 2.5 µL/min), and 13 steroids were detected in eluting cell medium over 48 h at the lowest flow rate. The presented work and results pave the way for a time-resolved microfluidic H295R steroidogenesis assay. Graphical abstract
More
Translated text
Key words
Thiol-ene,PDMS,Biocompatibility,Microfluidics,Steroidogenesis,Cell-based assay
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined