Strong parametric dispersive shifts in a statically decoupled two-qubit cavity QED system

Nature Physics(2023)

Cited 1|Views23
No score
Abstract
Qubits in cavity quantum electrodynamic (QED) architectures are often operated in the dispersive regime, in which the operating frequency of the cavity depends on the energy state of the qubit, and vice versa. The ability to tune these dispersive shifts provides additional options for performing either quantum measurements or logical manipulations. Here we couple two transmon qubits to a lumped-element cavity through a shared superconducting quantum interference device (SQUID). Our design balances the mutual capacitive and inductive circuit components so that both qubits are statically decoupled from the cavity with low flux sensitivity, offering protection from decoherence processes. Parametric driving of the SQUID flux enables independent, dynamical tuning of each qubit’s interaction with the cavity. As a practical demonstration, we perform pulsed parametric dispersive readout of both qubits. The dispersive frequency shifts of the cavity mode follow the theoretically expected magnitude and sign. This parametric approach creates an extensible, tunable cavity QED framework with various future applications, such as entanglement and error correction via multi-qubit parity readout, state and entanglement stabilization, and parametric logical gates.
More
Translated text
Key words
Quantum information,Qubits,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined