A fluid model of pulsed direct current planar magnetron discharge

Si Bui Quang Tran,Fong Yew Leong, Ramanarayan Hariharaputran,Duc Vinh Le

Scientific Reports(2023)

引用 0|浏览2
暂无评分
摘要
We simulated a pulsed direct current (DC) planar magnetron discharge using fluid model, solving for species continuity, momentum, and energy transfer equations, coupled with Poisson equation and Lorentz force for electromagnetism. Based on a validated DC magnetron model, an asymmetric bipolar potential waveform is applied at the cathode at 50–200 kHz frequency and 50–80% duty cycle. Our results show that pulsing leads to increased electron density and electron temperature, but decreased deposition rate over non-pulsed DC magnetron, trends consistent with those reported by experimental studies. Increasing pulse frequency increases electron temperature but reduces the electron density and deposition rate, whereas increasing duty cycle decreases both electron temperature and density but increases deposition rate. We found that the time-averaged electron density scales inversely with the frequency, and time-averaged discharge voltage magnitude scales with the duty cycle. Our results are readily applicable to modulated pulse power magnetron sputtering and can be extended to alternating current (AC) reactive sputtering processes.
更多
查看译文
关键词
Mathematics and computing,Physics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要