谷歌浏览器插件
订阅小程序
在清言上使用

Feature-based Attentional Amplitude Modulations of the Steady-state Visual Evoked Potentials Reflect Blood Oxygen Level Dependent Changes in Feature-sensitive Visual Areas

Journal of cognitive neuroscience(2023)

引用 0|浏览6
暂无评分
摘要
Recent EEG studies have investigated basic principles of feature-based attention by means of frequency-tagged random dot kinematograms in which different colors are simultaneously presented at different temporal frequencies to elicit steady-state visual evoked potentials (SSVEPs). These experiments consistently showed global facilitation of the to-be-attended random dot kinematogram—a basic principle of feature-based attention. SSVEP source estimation suggested that posterior visual cortex from V1 to area hMT+/V5 is broadly activated by frequency-tagged stimuli. What is presently unknown is whether the feature-based attentional facilitation of SSVEPs is a rather unspecific neural response including all visual areas that follow the “on/off,” or whether SSVEP feature-based amplitude enhancements are driven by activity in visual areas most sensitive to a specific feature, such as V4v in the case of color. Here, we leverage multimodal SSVEP-fMRI recordings in human participants and a multidimensional feature-based attention paradigm to investigate this question. Attending to shape produced significantly greater SSVEP-BOLD covariation in primary visual cortex compared with color. SSVEP-BOLD covariation during color selection increased along the visual hierarchy, with greatest values in areas V3 and V4. Importantly, in area hMT+/V5, we found no differences between shape and color selection. Results suggest that SSVEP amplitude enhancements in feature-based attention is not an unspecific enhancement of neural activity in all visual areas following the “on/off.” These findings open new avenues to investigating neural dynamics of competitive interactions in specific visual areas sensitive to a certain feature in a more economical way and better temporal resolution compared with fMRI.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要