Atmospheric saccharides over the East China Sea: Assessment of the contribution of sea-land emission and the aging of levoglucosan.

The Science of the total environment(2023)

引用 1|浏览10
暂无评分
摘要
A one-year observation of aerosols on a remote island was conducted and saccharides were applied to reveal the behaviors of organic aerosol in the East China Sea (ECS). The seasonal fluctuations of total saccharides were relatively small, with annual mean concentration of 64.82 ± 26.88 ng/m3, contributing 10.20 % and 4.90 % to WSOC and OC, respectively. However, the individual species showed significant seasonal variations due to the differences in both the emission sources and the influencing factors between marine and terrestrial areas. Anhydrosugars was the highest species and showed little diurnal variation in air mass from land areas. Primary sugars and primary sugar alcohols showed higher concentrations in blooming spring and summer and were higher in daytime than nighttime due to intense biogenic emissions both in marine and mainland areas. Accordingly, secondary sugar alcohols showed obvious different diurnal variation with ratios of day/night reducing to 0.86 in summer but even increasing to 1.53 in winter, attributing to the additional impact of secondary transmission process. Source appointment suggested that biomass burning emission (36.41 %) and biogenic emission (43.17 %) were the main causes of organic aerosol, while anthropogenic related secondary process and sea salt injection accounted for 13.57 % and 6.85 %, respectively. We further elucidate that the biomass burning emission might be underestimated, as levoglucosan undergoes degradation processes in the atmosphere, which are affected by various atmospheric physicochemical factors, and the degradation degree is particularly severe in remote areas like the oceans. In addition, significantly low ratio of levoglucosan to mannosan (L/M) occurred in air mass from marine area, indicating that levoglucosan was likely be more fully aged after hovering over a large-scale of oceanic area.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要