Significantly mitigating PM2.5 pollution level via reduction of NOx emission during wintertime.

The Science of the total environment(2023)

引用 0|浏览13
暂无评分
摘要
Despite considerable decreases in fine particulate matter (PM2.5) in Chinese megacities over the past decade, many second- and third-tier cities that distribute abundant industrial enterprises are still facing great challenges for PM2.5 further reduction under the recent policy background of eliminating heavily-polluted weather. In view of core effects of NOx on PM2.5, the deeper reductions of NOx in these cities are expected to break the plateau of PM2.5 decline, however, the link between NOx emission and PM2.5 mass loading is currently lacking. Herein, we progressively construct an evaluation system for PM2.5 productions based on daily NOx emissions in a typical industrial city (Jiyuan), considering a sequence of nested parameters involving evolutions of NO2 into nitric acid and then nitrate, and contributions of nitrate to PM2.5. The evaluation system was subsequently validated to better reproduce real increasing processes for PM2.5 pollution based on 19 pollution cases, with root mean square errors of 19.2 ± 16.4 %, suggesting the feasibility of developing NOx emission indicators linked to goals of mitigating atmospheric PM2.5. Additionally, further comparative results reveal that currently high NOx emissions in this industrial city severely hinder the achievement of atmospheric PM2.5 environmental capacity targets, especially in the scenarios of high initial PM2.5 level, low planetary boundary layer height and long pollution duration. It is anticipated that these methodologies and findings would supply guidelines for further regional PM2.5 mitigation, in which source-oriented NOx indicators could also provide some orientations for industrial cleaner production such as denitrification and low nitrogen combustion.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要