Enhanced Pulley Effect for Translocation: The Interplay of Electrostatic and Hydrodynamic Forces

Biomacromolecules(2023)

引用 0|浏览2
暂无评分
摘要
Solid-state nanopore sensors remain a promising solution to the rising global demand for genome sequencing. These single-molecule sensing technologies require single-file translocation for high resolution and accurate detection. In a previous publication, we discovered a hairpin unraveling mechanism, namely, the pulley effect, in a pressure-driven translocation system. In this paper, we further investigate the pulley effect in the presence of pressure-driven fluid flow and an opposing force provided by an electrostatic field as an approach to increase single-file capture probability. A hydrodynamic flow is used to move the polymer forward, and two oppositely charged electrostatic square loops are used to create an opposing force. By optimizing the balance between forces, we show that the single-file capture can be amplified from about 50% to almost 95%. The force location, force strength, and flow rate are used as the optimizing variables.
更多
查看译文
关键词
pulley effect,translocation,electrostatic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要