Bidirectional photoswitchability in an iron(iii) spin crossover complex: symmetry-breaking and solvent effects.

Chemical science(2023)

引用 3|浏览4
暂无评分
摘要
The impact of solvent on spin crossover (SCO) behaviour is reported in two solvates [Fe(qsal-I)]NO·2ROH (qsal-I = 4-iodo-2-[(8-quinolylimino)methyl]phenolate; R = Me 1 or Et 2) which undergo abrupt and gradual SCO, respectively. A symmetry-breaking phase transition due to spin-state ordering from a [HS] to [HS-LS] state occurs at 210 K in 1, while = 250 K for the EtOH solvate, where complete SCO occurs. The MeOH solvate exhibits LIESST and -LIESST from the [HS-LS] state, revealing a hidden [LS] state. Moreover, photocrystallographic studies on 1 at 10 K reveal re-entrant photoinduced phase transitions to a high symmetry [HS] phase when irradiated at 980 nm or a high symmetry [LS] phase after irradiation at 660 nm. This study represents the first example of bidirectional photoswitchability and subsequent symmetry-breaking from a [HS-LS] state in an iron(iii) SCO material.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要