Effect and mechanism of total ginsenosides repairing SDS‑induced Drosophila enteritis model based on MAPK pathway.

Hang Su,Yujing Tan, Zhijiang Zhou,Chunjuan Wang,Wei Chen, Jinlong Wang,Haiming Sun

Experimental and therapeutic medicine(2023)

引用 0|浏览3
暂无评分
摘要
Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal disease that seriously endangers human and animal health. Although the etiology of IBD is complex and the pathogenesis is not well understood, studies have found that genetic predisposition, diet and intestinal flora disorders are the main risk factors for IBD. The potential biological mechanism of total ginsenosides (TGGR) in the treatment of IBD remains to be elucidated. Surgery is still the main strategy for the treatment of IBD, due to the relatively high side effects of related drugs and the easy development of drug resistance. The purpose of the present study was to evaluate the efficacy of TGGR and explore the effect of TGGR on the intestinal inflammation induced by sodium dodecyl sulfate (SDS) in and to initially explain the improvement effect and mechanism of TGGR on enteritis by analyzing the levels of -related proteins. During the experiment, the survival rate, climb index and abdominal characteristics of the was recorded. Intestinal samples of were collected for analysis of intestinal melanoma. The oxidative stress related indexes of catalase, superoxide dismutase and malondialdehyde were determined by spectrophotometry. Western blotting detected the expression of signal pathway-related factors. The effects of TGGR on growth indices, tissue indices, biochemical indices, signal pathway transduction and related mechanisms of SDS-induced enteritis model were studied. The results showed that TGGR could repair SDS-induced enteritis of through MAPK signaling pathway, improve survival rate and climbing ability and repair intestinal damage and oxidative stress damage. The results suggested that TGGR has potential application value in the treatment of IBD and its mechanism is related to the downregulation of phosphorylated (p)-JNK/p-ERK levels, which provides a basis for drug research in the treatment of IBD.
更多
查看译文
关键词
total ginsenosides,enteritis model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要