Stress Lowers Staphylococcal Enterotoxin C Production Independently of Agr, SarA, and SigB.

Journal of food protection(2023)

引用 0|浏览0
暂无评分
摘要
Staphylococcal enterotoxin C (SEC) can cause staphylococcal food poisoning, one of the most prevalent foodborne intoxications. It is produced by Staphylococcus aureus during growth in the food matrix. While the surrounding bacteria in food matrices usually repress the growth of S.aureus, the organism possesses a remarkable growth advantage under stressful conditions encountered in many foods. Examples for such food matrices are pastry and bakery products with their high sugar content that lowers water availability. While S. aureus can still grow in these challenging environments, it remains unclear how these conditions affect SEC expression. Here, the influence of 30% glucose on sec mRNA in a qPCR assay and SEC protein expression was investigated for the first time in an ELISA. In addition, regulatory knockout mutants Δagr, ΔsarA, and ΔsigB were generated to investigate regulatory gene elements in glucose stress. In five out of seven strains, glucose stress led to a pronounced decrease in sec mRNA transcription and SEC protein levels were substantially lower under glucose stress. It could be shown that key regulatory elements Δagr, ΔsarA, and ΔsigB in strain SAI48 did not contribute to the pronounced downregulation under glucose stress. Based on these findings, glucose effectively lowers SEC synthesis in the food matrix. However, the mechanism by which it acts on toxin expression and regulatory elements in S. aureus remains unclear. Future studies on other regulatory elements and transcriptomics may shed light on the mechanisms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要